7339 independent reflections

 $R_{\rm int} = 0.054$

5558 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4-Bis(4-nitrophenyl)-1,2,5-oxadiazole 2-oxide

Ghali Alhouari,^a Abdelali Kerbal,^a Najib Ben Larbi,^a Taibi Ben Hadda,^b* Maria Daoudi^b and Helen Stoeckli-Evans^c

^aLaboratoire de Chimie Organique, Faculté des Sciences Dhar El Mehraz, Fès, Morocco, ^bLaboratoire d'Activation Moléculaire, Faculté des Sciences, 60000 Oujda, Morocco, and ^cInstitut de Microtechnique, Université de Neuchâtel, Rue Emile Argand 11, CH-2009 Neuchâtel, Switzerland Correspondence e-mail: tbenhadda@yahoo.fr

Received 20 November 2007; accepted 12 December 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.060; wR factor = 0.133; data-to-parameter ratio = 16.2.

The title compound, C14H8N4O6, a new 1,2,5-oxadiazole Noxide derivative, was formed by dimerization of 4-nitrobenzaldehyde oxime. The compound crystallizes with two independent molecules per asymmetric unit. The N-oxide O atom is disordered over two sites in each molecule; site occupancy factors are 0.57/0.43 and 0.5/0.5. The mean planes through the two benzene rings are inclined to the planar 1,2,3-oxadiazole ring by 25.03 (11) and 41.64 $(11)^{\circ}$ in one molecule, and 22.58 (11) and 42.66 $(11)^{\circ}$ in the other molecule, the smaller angle being for the ring on the oxide side of the oxadiazole ring in each case. In the crystal structure, the individual molecules form centrosymmetric dimers linked via C-H···O hydrogen bonds. The dimers of one molecule are then linked to those of the other molecule *via* $C-H \cdot \cdot \cdot O$ hydrogen bonds, forming a three-dimensional network.

Related literature

For related literature, see: Sillitoe & Harding (1978); Easton et al. (1995); Baker et al. (2002); Allen (2002); Allen et al. (1987); Howe & Shelton (1990); Kerbal et al. (1990); Smietana et al. (1999).

Experimental

Crystal data

a uno	II. 272 (7 (2) ¹ 3
$C_{14}H_8N_4O_6$	V = 2/26.7 (3) A ³
$M_r = 328.24$	Z = 8
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 17.3977 (11) Å	$\mu = 0.13 \text{ mm}^{-1}$
b = 7.2813 (4) Å	T = 173 (2) K
c = 21.5341 (13) Å	$0.40 \times 0.35 \times 0.30$ mm
$\beta = 91.667 \ (5)^{\circ}$	
$ a = 17.3977 (11) \text{ Å} b = 7.2813 (4) \text{ Å} c = 21.5341 (13) \text{ Å} \beta = 91.667 (5)^{\circ} $	$\mu = 0.13 \text{ mm}^{-1}$ T = 173 (2) K $0.40 \times 0.35 \times 0.30 \text{ mm}$

Data collection

Stoe IPDS-2 diffractometer Absorption correction: none 29047 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ wR(F²) = 0.133 452 parameters H-atom parameters constrained S = 1.15 $\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.17$ e Å⁻³ 7339 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C5−H5···O5 ⁱ	0.95	2.59	3.283 (3)	130
C14−H14···O23 ⁱⁱ	0.95	2.46	3.244 (3)	139
$C25-H25\cdots O25^{iii}$	0.95	2.57	3.358 (3)	141
$C27 - H27 \cdots O1A^{iv}$	0.95	2.36	3.254 (4)	156
$C31-H31\cdots O5^{v}$	0.95	2.52	3.261 (3)	135
C34−H34···O4 ⁱⁱ	0.95	2.50	3.284 (3)	140
Symmetry codes: (i)	-x, -y + 1,	-z + 1; (ii)	$-x+1, y-\frac{1}{2}, -$	$z + \frac{1}{2};$ (iii)

-x + 1, -y + 1, -z; (iv) x + 1, y, z; (v) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

This work was supported by the Ministry of Education of the Kingdom of Morocco (Projet Globale de Recherche of the Université Mohamed Premier, grant PGR-BH-2005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2154).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Baker, K. W. J., March, A. R., Parsons, S., Paton, R. M. & Stewart, G. W. (2002). Tetrahedron, 58, 8505-8513.
- Easton, C. J., Hughes, C. M., Tiekink, E. R. T., Savage, G. P. & Simpson, G. W. (1995). Z. Kristallogr. 210, 625-626.
- Howe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603-4607.
- Kerbal, A., Tshiamala, K., Cerutti, E., Laude, B. & Vebrel, J. (1990). Bull. Soc. Chim. Fr. 127, 252-257.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sillitoe, A. K. & Harding, M. M. (1978). Acta Cryst. B34, 2021-2022.
- Smietana, M., Gouverneur, V. & Mioskowski, C. (1999). Tetrahedron Lett. 40, 1291-1294.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stoe & Cie (2006). X-AREA (Version 1.35) and X-RED32 (Version 1.31). Stoe & Cie GmbH, Darmstadt, Germany.

Acta Cryst. (2008). E64, o511 [doi:10.1107/S1600536807066640]

3,4-Bis(4-nitrophenyl)-1,2,5-oxadiazole 2-oxide

G. Alhouari, A. Kerbal, N. B. Larbi, T. B. Hadda, M. Daoudi and H. Stoeckli-Evans

Comment

In the course of our research aimed at the synthesis of new efficient antitubercular agents containing simple pharmacophore sites of the type X—C—C—Y we turned our attention to the spiro-isoxazolines which posses a rigid (O=C—C—O) pharmacophore. These compounds display interesting biological properties, such as herbicidal, plant-growth regulatory and antitumor activities (Howe & Shelton, 1990; Smietana *et al.*, 1999). The preparation of the spiro-isoxazolines, in which we are interested, normally involves the reaction of a nitriloxyde [(E)-4-nitrobenzaldehyde oxime, (I)] with an isothiochromanone in a solution of hydrogen peroxyde (Kerbal *et al.*, 1990). We have noted many times the formation of a by-product during this reaction. Finally this compound has been isolated and examined crystallographically. It was found to be a new 1,2,5-oxadiazole N-oxide derivative, (II).

The molecular structure of compound (II) is shown in Fig. 1. The compound crystallizes with two independent molecules (1 & 2) per asymmetric unit. The 1,2,5-oxadiazole units are disordered with two alternative positions for the N-oxide O-atom [atom O1a/O1b in molecule 1, and atom O21a/O21b in molecule 2]. There are some short intramolecular C···O contacts in the two molecules involving the disordered atoms; O1b and neighbouring C-atoms C2 and C3, and atom O21b with atom C22. A search of the Cambridge Crystallographic Data Base (Version 1.8, last update May 2007: Allen, 2002) indicates that such short interactions are not unusual. The 1,2,5-oxadiazole ring is planar [to within 0.008 and 0.009 Å, in molecules 1 and 2, respectively] and the bond distances and angles are similar to those in the diphenyl analoque 3,4-Diphenylfurazan N-oxide, (III) [Sillitoe & Harding, 1978)]. They do not indicate the presence of delocalized electron density as in the dichlorophenyl analoque 4,5-bis(2,6-Dichlorophenyl)-1-oxide-2-oxa-1,3-diazole, (IV) [Easton *et al.*, 1995] or a D-mannose-derived furox-an [Baker *et al.*, 2002]. The C?N bonds being significantly shorter than the C—C or O—N bonds. The remainder of the bond distances in (II) are within normal limits (Allen *et al.*, 1987). The best planes through the phenyl rings are inclined to the best plane through the 1,2,5-oxadiazole ring by 25.03 (11) and 41.64 (11)° in molecule 1, and 22.58 (11) and 42.66 (11)° in molecule 2. This is quite different to the situation in (III), where the same dihedral angles are 16.7 and 59.6°, or in (IV), where the same dihedral angles are 63.1 (3) and 65.6 (5)°.

In the crystal structure of (II) the individual molecules are linked to their symmetry related molecule *via* C—H···O hydrogen bonds to form centrosymmetric dimers. These dimers are in turn linked by other C—H···O hydrogen bonds to form a three-dimensional network. Details of the hydrogen bonding are given in Table 1 and Fig. 2.

The formation of compound (II) is similar to that described by Baker *et al.* (2002), who have studied in detail the synthesis and X-ray structure of 3,4-dipyranosyl-1,2,5-oxadiazole 2-oxide. Similarly we found that the reaction of 4-nitrobenzaldehyde oxime with pure NaOCl in CHCl₃, but never CH₂Cl₂, gives an almost quantitative yield of (II) (95%), on simply stirring at room temperature for 16 h.

Experimental

The reaction of 4-nitrobenzaldehyde oxime with pure NaOCl, in a 2:1 molar ratio, in $CHCl_3$ (but never CH_2Cl_2) gives an almost quantitative yield of (II) (95%), on stirring at room temperature for 16 h. Yellow block-like crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution of (II).

Refinement

The N-oxide O-atom is disordered over two sites in each molecule (1 & 2); the occupancies were finally fixed at O1a/O1b = 0.57/0.43 and O31a/O31b = 0.5/0.5. The hydrogen atoms could all be located from difference Fourier maps. They were included in calculated positons and treated as riding atoms with C—H distances = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}$ (parent C-atom).

Figures

Fig. 1. Molecular structure of the two independent molecules (1 and 2) of compound (II), showing the crystallographic atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. The disordered N-oxide O-atoms, O1B and O21B, bonded to atoms N2 and N22, respectively, are drawn with red and white checkered patterned ellipses. The hydrogen atoms have been omitted for clarity.

Fig. 2. A view along the *b* axis of the crystal packing of compound (II). The C—H···O contacts are shown as dashed lines. The atoms of Molecule 2 are red [H-atoms not involved in C—H···O contacts have been removed for clarity].

3,4-Bis(4-nitrophenyl)-1,2,5-oxadiazole 2-oxide

C₁₄H₈N₄O₆ $M_r = 328.24$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 17.3977 (11) Å b = 7.2813 (4) Å c = 21.5341 (13) Å $\beta = 91.667 (5)^{\circ}$ $V = 2726.7 (3) \text{ Å}^{3}$ Z = 8 F(000) = 1344 $D_x = 1.599 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 22316 reflections $\theta = 1.4-29.6^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 173 KBlock, yellow $0.40 \times 0.35 \times 0.30 \text{ mm}$

Data collection

Stoe IPDS-2 diffractometer	5558 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.054$
graphite	$\theta_{\text{max}} = 29.3^\circ, \ \theta_{\text{min}} = 1.9^\circ$
Detector resolution: 6.67 pixels mm ⁻¹	$h = -23 \rightarrow 23$
φ and ω scans	$k = -9 \rightarrow 9$
29047 measured reflections	<i>l</i> = −29→27
7339 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.060$	H-atom parameters constrained
$wR(F^2) = 0.133$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0291P)^{2} + 1.6814P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.15	$(\Delta/\sigma)_{\text{max}} = 0.001$
7339 reflections	$\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$
452 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 1997), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0064 (7)

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
O1A	-0.20064 (15)	1.0812 (5)	0.33132 (14)	0.0569 (10)	0.570
O1B	-0.0065 (2)	1.3687 (5)	0.26989 (17)	0.0467 (12)	0.430
02	-0.11135 (10)	1.2492 (2)	0.29646 (8)	0.0559 (6)	
03	0.34176 (9)	0.9789 (2)	0.41298 (8)	0.0532 (6)	
O4	0.35733 (9)	1.0989 (3)	0.32312 (9)	0.0613 (6)	
05	-0.16080 (10)	0.2648 (3)	0.48002 (10)	0.0649 (7)	

O6	-0.03872 (10)	0.2186 (2)	0.47351 (8)	0.0533 (6)	
N1	-0.13345 (11)	1.0918 (3)	0.32958 (9)	0.0482 (6)	
N2	-0.03118 (11)	1.2504 (3)	0.29531 (9)	0.0458 (6)	
N3	0.31689 (10)	1.0437 (2)	0.36429 (9)	0.0408 (5)	
N4	-0.09605 (11)	0.3130 (3)	0.46617 (8)	0.0435 (6)	
C1	-0.07019 (11)	1.0052 (3)	0.34783 (9)	0.0374 (6)	
C2	-0.00587 (12)	1.1062 (3)	0.32676 (9)	0.0376 (6)	
C3	0.07736 (11)	1.0830 (3)	0.33666 (9)	0.0350 (6)	
C4	0.10802 (12)	1.0318 (3)	0.39460 (9)	0.0384 (6)	
C5	0.18658 (11)	1.0173 (3)	0.40352 (10)	0.0378 (6)	
C6	0.23332 (11)	1.0561 (3)	0.35481 (10)	0.0359 (6)	
C7	0.20455 (12)	1.1079 (3)	0.29709 (10)	0.0403 (6)	
C8	0.12612 (12)	1.1209 (3)	0.28824 (10)	0.0403 (6)	
С9	-0.07511 (11)	0.8297 (3)	0.38100 (9)	0.0359 (6)	
C10	-0.14024 (12)	0.7885 (3)	0.41433 (10)	0.0442 (7)	
C11	-0.14705 (12)	0.6194 (3)	0.44269 (11)	0.0449 (7)	
C12	-0.08802(12)	0.4955 (3)	0.43814 (9)	0.0384 (6)	
C13	-0.02201(11)	0.5341 (3)	0.40691 (10)	0.0382 (6)	
C14	-0.01649(11)	0.7014 (3)	0.37723 (9)	0.0373 (6)	
O21A	0.29246 (18)	1.1020 (5)	0.16767 (16)	0.0578 (13)	0.50
O21B	0.49456 (18)	1.3863 (4)	0.22893 (14)	0.0461 (10)	0.50
022	0 38508 (9)	1 2667 (2)	0 20230 (8)	0.0542 (6)	
023	0.85144 (9)	1.0823 (3)	0.17637 (9)	0.0620(7)	
024	0.82849(10)	0.9729(3)	0.08579 (9)	0.0597 (6)	
025	0.31736 (10)	0.2800(2)	0.02256 (9)	0.0582 (6)	
026	0.31750(10) 0.44007(10)	0.2367(2)	0.02397 (8)	0.0537 (6)	
N21	0.36029(11)	1,1097(3)	0.02397(0)	0.0357(0)	
N22	0.46569 (11)	1.1097 (3)	0.20255 (9)	0.0445(6)	
N23	0.80723 (10)	1.0366 (2)	0.20235(9) 0.13458(9)	0.0420 (6)	
N24	0.38324(11)	0.3300(3)	0.03385 (8)	0.0425(6)	
C21	0.30321(11) 0.42189(11)	1.0222(3)	0.15133 (9)	0.0367 (6)	
C22	0.42109(11) 0.48800(11)	1.0222(3) 1.1233(3)	0.13135(9)	0.0366 (6)	
C22	0.48800(11) 0.57059(11)	1.1255(5) 1.0973(3)	0.16113 (9)	0.0300 (0)	
C24	0.59670 (11)	1.0773(3)	0.10115(9) 0.10327(9)	0.0378(6)	
C25	0.57070(11) 0.67416(12)	1.0433(3)	0.10327(0)	0.0378(0)	
C25	0.07410(12) 0.72470(11)	1.0243(3)	0.09420(10) 0.14254(10)	0.0364(0)	
C20	0.72470(11) 0.70047(12)	1.0381(3)	0.14334(10) 0.20112(10)	0.0301(0)	
C27	0.70047(12) 0.62222(12)	1.1111(3) 1.1202(2)	0.20112(10)	0.0390(0)	
C28	0.02325(12) 0.41246(11)	1.1303(3)	0.20988 (9)	0.0391(6)	
C29	0.41340(11) 0.24415(12)	0.8404(3)	0.11884(9)	0.0339(0)	
C30	0.34413(12) 0.22427(12)	0.8024 (3)	0.08820 (10)	0.0449(7)	
C31	0.33437 (12)	0.6338 (3)	0.06037 (11)	0.0452 (7)	
C32	0.394/1(12)	0.5119 (3)	0.061//(9)	0.0380 (6)	
C33	0.46440 (11)	0.5523 (3)	0.09033 (10)	0.0387 (6)	
C34	0.47300 (11)	0./196 (3)	0.11986 (10)	0.03/5(6)	
H4	0.07490	1.00690	0.42790	0.0460*	
H/	0.23810	1.13390	0.26420	0.0480*	
H8	0.10510	1.15590	0.24880	0.0480*	
H10	-0.18010	0.87690	0.41760	0.0530*	
H11	-0.19170	0.58940	0.46490	0.0540*	

00 00

H13	0.01880	0.44760	0.40580	0.0460*
H14	0.02770	0.72880	0.35410	0.0450*
Н5	0.20810	0.98100	0.44270	0.0450*
H24	0.56090	1.02430	0.06990	0.0450*
H25	0.69240	0.98750	0.05500	0.0460*
H27	0.73660	1.13390	0.23410	0.0480*
H28	0.60550	1.16630	0.24940	0.0470*
H30	0.30350	0.88940	0.08670	0.0540*
H31	0.28670	0.60220	0.04050	0.0540*
H33	0.50570	0.46700	0.08970	0.0460*
H34	0.52010	0.74810	0.14110	0.0450*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0354 (14)	0.080 (2)	0.0549 (17)	0.0116 (14)	-0.0039 (12)	0.0144 (15)
O1B	0.054 (2)	0.042 (2)	0.044 (2)	0.0035 (16)	0.0018 (16)	0.0160 (16)
02	0.0530 (10)	0.0577 (11)	0.0558 (10)	0.0170 (8)	-0.0162 (8)	0.0003 (8)
03	0.0414 (8)	0.0630 (11)	0.0547 (10)	0.0061 (8)	-0.0064 (7)	0.0046 (8)
04	0.0396 (9)	0.0799 (13)	0.0647 (11)	-0.0101 (8)	0.0077 (8)	0.0087 (10)
05	0.0531 (10)	0.0581 (11)	0.0836 (13)	-0.0183 (9)	0.0061 (9)	0.0106 (10)
06	0.0598 (10)	0.0446 (9)	0.0553 (10)	0.0018 (8)	-0.0015 (8)	0.0031 (7)
N1	0.0411 (10)	0.0575 (12)	0.0454 (10)	0.0076 (9)	-0.0081 (8)	-0.0004 (9)
N2	0.0463 (10)	0.0458 (11)	0.0445 (10)	0.0058 (8)	-0.0100 (8)	0.0011 (9)
N3	0.0367 (9)	0.0356 (9)	0.0501 (10)	-0.0017 (7)	-0.0009 (8)	-0.0050 (8)
N4	0.0467 (10)	0.0430 (10)	0.0406 (9)	-0.0107 (8)	-0.0025 (8)	-0.0041 (8)
C1	0.0344 (10)	0.0432 (11)	0.0342 (10)	0.0044 (8)	-0.0047 (7)	-0.0030 (8)
C2	0.0396 (10)	0.0394 (11)	0.0334 (10)	0.0023 (8)	-0.0049 (8)	-0.0012 (8)
C3	0.0350 (10)	0.0319 (10)	0.0379 (10)	-0.0039 (8)	-0.0036 (8)	0.0014 (8)
C4	0.0388 (10)	0.0399 (11)	0.0365 (10)	-0.0040 (8)	-0.0007 (8)	0.0027 (8)
C5	0.0382 (10)	0.0376 (11)	0.0374 (10)	-0.0017 (8)	-0.0044 (8)	0.0020 (8)
C6	0.0342 (9)	0.0285 (9)	0.0450 (11)	-0.0025 (8)	-0.0009 (8)	-0.0034 (8)
C7	0.0403 (11)	0.0396 (11)	0.0412 (11)	-0.0049 (9)	0.0033 (8)	0.0022 (9)
C8	0.0417 (11)	0.0397 (11)	0.0393 (11)	-0.0041 (9)	-0.0030 (8)	0.0051 (9)
C9	0.0310 (9)	0.0428 (11)	0.0337 (9)	-0.0030 (8)	-0.0030(7)	-0.0022 (8)
C10	0.0351 (10)	0.0493 (13)	0.0485 (12)	0.0030 (9)	0.0047 (9)	0.0019 (10)
C11	0.0355 (10)	0.0519 (13)	0.0475 (12)	-0.0038 (9)	0.0056 (9)	0.0012 (10)
C12	0.0394 (10)	0.0391 (11)	0.0364 (10)	-0.0069 (8)	-0.0036 (8)	-0.0023 (8)
C13	0.0344 (10)	0.0379 (10)	0.0419 (11)	-0.0026 (8)	-0.0033 (8)	-0.0048 (9)
C14	0.0331 (10)	0.0404 (11)	0.0383 (10)	-0.0041 (8)	0.0005 (8)	-0.0037 (8)
O21A	0.0357 (16)	0.078 (3)	0.060 (2)	0.0089 (16)	0.0076 (14)	-0.0136 (18)
O21B	0.0495 (17)	0.0430 (17)	0.0459 (17)	-0.0024 (14)	0.0008 (13)	-0.0184 (14)
O22	0.0515 (9)	0.0603 (11)	0.0514 (9)	0.0154 (8)	0.0136 (7)	-0.0062 (8)
O23	0.0375 (8)	0.0833 (14)	0.0650 (11)	-0.0078 (9)	-0.0038 (8)	-0.0061 (10)
O24	0.0454 (9)	0.0716 (12)	0.0628 (11)	0.0054 (8)	0.0119 (8)	-0.0120 (9)
O25	0.0519 (10)	0.0559 (11)	0.0669 (11)	-0.0174 (8)	0.0022 (8)	-0.0114 (9)
O26	0.0573 (10)	0.0465 (9)	0.0572 (10)	0.0029 (8)	0.0022 (8)	-0.0064 (8)
N21	0.0406 (10)	0.0574 (12)	0.0414 (10)	0.0057 (9)	0.0070 (7)	-0.0025 (9)

N22	0.0470 (10)	0.0452 (11)	0.0416 (10)	0.0037 (8)	0.0085 (8)	-0.0041 (8)
N23	0.0386 (9)	0.0359 (9)	0.0516 (11)	-0.0028 (7)	0.0045 (8)	0.0039 (8)
N24	0.0481 (10)	0.0408 (10)	0.0386 (9)	-0.0057 (8)	0.0037 (8)	0.0020 (8)
C21	0.0334 (9)	0.0439 (11)	0.0331 (9)	0.0015 (8)	0.0041 (7)	-0.0002 (8)
C22	0.0372 (10)	0.0397 (11)	0.0331 (9)	0.0008 (8)	0.0050 (7)	-0.0004 (8)
C23	0.0371 (10)	0.0309 (10)	0.0375 (10)	-0.0038 (8)	0.0036 (8)	-0.0006 (8)
C24	0.0379 (10)	0.0374 (10)	0.0380 (10)	-0.0030 (8)	0.0015 (8)	-0.0029 (8)
C25	0.0414 (11)	0.0367 (10)	0.0375 (10)	-0.0023 (8)	0.0058 (8)	-0.0039 (8)
C26	0.0371 (10)	0.0280 (9)	0.0433 (11)	-0.0036 (8)	0.0040 (8)	0.0021 (8)
C27	0.0402 (11)	0.0384 (11)	0.0401 (11)	-0.0061 (9)	-0.0022 (8)	-0.0006 (9)
C28	0.0422 (11)	0.0397 (11)	0.0354 (10)	-0.0053 (9)	0.0036 (8)	-0.0030 (8)
C29	0.0319 (9)	0.0415 (11)	0.0343 (9)	-0.0019 (8)	0.0038 (7)	0.0012 (8)
C30	0.0357 (10)	0.0499 (13)	0.0488 (12)	0.0062 (9)	-0.0046 (9)	-0.0042 (10)
C31	0.0338 (10)	0.0525 (13)	0.0488 (12)	-0.0026 (9)	-0.0064 (9)	-0.0063 (10)
C32	0.0395 (10)	0.0400 (11)	0.0346 (10)	-0.0054 (8)	0.0041 (8)	0.0006 (8)
C33	0.0324 (9)	0.0385 (11)	0.0454 (11)	-0.0013 (8)	0.0045 (8)	0.0032 (9)
C34	0.0291 (9)	0.0412 (11)	0.0421 (11)	-0.0049 (8)	0.0005 (8)	0.0026 (9)

Geometric parameters (Å, °)

O1A—N1	1.173 (3)	C10-C11	1.381 (3)
O1B—N2	1.113 (4)	C11—C12	1.373 (3)
O2—N2	1.396 (3)	C12—C13	1.377 (3)
O2—N1	1.409 (3)	C13—C14	1.380 (3)
O3—N3	1.218 (2)	C4—H4	0.9500
O4—N3	1.216 (3)	С5—Н5	0.9500
O5—N4	1.225 (3)	С7—Н7	0.9500
O6—N4	1.218 (3)	С8—Н8	0.9500
O21A—N21	1.181 (4)	C10—H10	0.9500
O21B—N22	1.143 (4)	C11—H11	0.9500
O22—N21	1.399 (3)	С13—Н13	0.9500
O22—N22	1.402 (2)	C14—H14	0.9500
O23—N23	1.213 (3)	C21—C22	1.421 (3)
O24—N23	1.216 (3)	C21—C29	1.464 (3)
O25—N24	1.220 (3)	C22—C23	1.471 (3)
O26—N24	1.223 (3)	C23—C24	1.391 (3)
N1—C1	1.318 (3)	C23—C28	1.394 (3)
N2—C2	1.318 (3)	C24—C25	1.376 (3)
N3—C6	1.465 (3)	C25—C26	1.381 (3)
N4—C12	1.468 (3)	C26—C27	1.376 (3)
N21—C21	1.320 (3)	C27—C28	1.370 (3)
N22—C22	1.314 (3)	C29—C30	1.394 (3)
N23—C26	1.463 (3)	C29—C34	1.387 (3)
N24—C32	1.466 (3)	C30—C31	1.375 (3)
C1—C9	1.468 (3)	C31—C32	1.374 (3)
C1—C2	1.424 (3)	C32—C33	1.375 (3)
C2—C3	1.467 (3)	C33—C34	1.380 (3)
C3—C8	1.391 (3)	C24—H24	0.9500
C3—C4	1.393 (3)	C25—H25	0.9500

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.379 (3)	С27—Н27	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6	1.375 (3)	C28—H28	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7	1.379 (3)	С30—Н30	0.9500
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	С7—С8	1.376 (3)	C31—H31	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10	1.392 (3)	С33—Н33	0.9500
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C9—C14	1.387 (3)	C34—H34	0.9500
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N1—O2—N2	107.55 (16)	С6—С5—Н5	121.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N21—O22—N22	107.40 (16)	С8—С7—Н7	121.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01A—N1—O2	110.9 (2)	С6—С7—Н7	121.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O2—N1—C1	107.59 (17)	С7—С8—Н8	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01A—N1—C1	141.5 (3)	С3—С8—Н8	120.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O2—N2—C2	107.76 (18)	C11—C10—H10	120.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O1B—N2—O2	114.4 (2)	С9—С10—Н10	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1B—N2—C2	137.8 (3)	C10-C11-H11	121.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—N3—O4	123.86 (18)	C12—C11—H11	121.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O3—N3—C6	118.05 (17)	C14—C13—H13	121.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—N3—C6	118.09 (18)	С12—С13—Н13	121.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O5—N4—C12	117.3 (2)	C13—C14—H14	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6—N4—C12	118.49 (18)	C9—C14—H14	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—N4—O6	124.2 (2)	N21—C21—C22	108.40 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O22—N21—C21	107.74 (17)	N21—C21—C29	119.80 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O21A—N21—O22	110.7 (2)	C22—C21—C29	131.73 (18)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O21A—N21—C21	141.6 (3)	N22—C22—C21	108.67 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O21B—N22—C22	136.8 (2)	N22—C22—C23	118.87 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O22—N22—C22	107.77 (17)	C21—C22—C23	132.43 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O21B—N22—O22	115.5 (2)	C22—C23—C24	120.81 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	023—N23—024	122.91 (19)	C22—C23—C28	119.36 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O23—N23—C26	118.45 (18)	C24—C23—C28	119.80 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O24—N23—C26	118.64 (18)	C23—C24—C25	120.27 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O25—N24—O26	124.0 (2)	C24—C25—C26	118.37 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O26—N24—C32	118.17 (18)	N23—C26—C25	119.00 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O25—N24—C32	117.85 (18)	N23—C26—C27	118.45 (18)
C2C1C9131.46 (18)C26C27C28118.70 (19)N1C1C2108.35 (19)C23C28C27120.30 (19)N2C2C3118.68 (19)C21C29C30119.99 (18)C1C2C3132.49 (19)C21C29C34120.66 (18)N2C2C1108.73 (18)C30C29C34119.3 (2)C4C3C8119.90 (18)C29C30C31120.4 (2)C2C3C4120.76 (18)C30C31C32118.8 (2)C2C3C8119.28 (18)N24C32C33118.96 (19)C3C4C5119.83 (19)N24C32C33118.98 (19)C4C5C6118.94 (19)C31C32C33122.3 (2)N3C6C5119.18 (19)C32C33C34118.50 (19)N3C6C7122.45 (19)C23C24H24120.00C5C7C8118.45 (19)C23C24H24120.00C3C8C7122.45 (19)C23C24H24120.00C3C8C7C8118.45 (19)C25C24H24120.00C3C8C7120.4 (2)C24C25H25121.00C1C9C10119.91 (18)C26C25H25121.00	N1—C1—C9	120.10 (18)	C25—C26—C27	122.55 (19)
N1C1C2 $108.35(19)$ $C23C28C27$ $120.30(19)$ N2C2C3 $118.68(19)$ $C21C29C30$ $119.99(18)$ C1C2C3 $132.49(19)$ $C21C29C34$ $120.66(18)$ N2C2C1 $108.73(18)$ $C30C29C34$ $119.3(2)$ C4C3C8 $119.90(18)$ $C29C30C31$ $120.4(2)$ C2C3C4 $120.76(18)$ $C30C31C32$ $118.8(2)$ C2C3C4 $119.28(18)$ $N24C32C31$ $118.67(19)$ C3C4C5 $119.83(19)$ $N24C32C33$ $118.98(19)$ C4C5C6 $118.94(19)$ $C31C32C33$ $122.3(2)$ N3C6C5 $119.18(19)$ $C32C33C34$ $118.50(19)$ N3C6C7 $122.45(19)$ $C23C24H24$ 120.00 C5C6-C7 $122.45(19)$ $C23C24H24$ 120.00 C6C7C8 $118.45(19)$ $C25C24H24$ 120.00 C3C8C7 $120.4(2)$ $C24C25H25$ 121.00 C1C9C10 $119.91(18)$ $C26C25H25$ 121.00	C2—C1—C9	131.46 (18)	C26—C27—C28	118.70 (19)
N2-C2-C3118.68 (19)C21-C29-C30119.99 (18)C1-C2-C3132.49 (19)C21-C29-C34120.66 (18)N2-C2-C1108.73 (18)C30-C29-C34119.3 (2)C4-C3-C8119.90 (18)C29-C30-C31120.4 (2)C2-C3-C4120.76 (18)C30-C31-C32118.8 (2)C2-C3-C8119.28 (18)N24-C32-C31118.67 (19)C3-C4-C5119.83 (19)N24-C32-C33118.98 (19)C4-C5-C6118.94 (19)C31-C32-C33122.3 (2)N3-C6-C5119.18 (19)C32-C33-C34118.50 (19)N3-C6-C7122.45 (19)C23-C24-H24120.00C5-C6-C7122.45 (19)C25-C24-H24120.00C3-C8-C7120.4 (2)C24-C25-H25121.00C1-C9-C10119.91 (18)C26-C25-H25121.00	N1—C1—C2	108.35 (19)	C23—C28—C27	120.30 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C2—C3	118.68 (19)	C21—C29—C30	119.99 (18)
N2—C2—C1 $108.73 (18)$ $C30$ —C29—C34 $119.3 (2)$ C4—C3—C8 $119.90 (18)$ $C29$ —C30—C31 $120.4 (2)$ C2—C3—C4 $120.76 (18)$ $C30$ —C31—C32 $118.8 (2)$ C2—C3—C8 $119.28 (18)$ $N24$ —C32—C31 $118.67 (19)$ C3—C4—C5 $119.83 (19)$ $N24$ —C32—C33 $118.98 (19)$ C4—C5—C6 $118.94 (19)$ C31—C32—C33 $122.3 (2)$ N3—C6—C5 $119.18 (19)$ C32—C33—C34 $118.50 (19)$ N3—C6—C7 $118.37 (18)$ C29—C34—C33 $120.61 (18)$ C5—C6—C7 $122.45 (19)$ C23—C24—H24 120.00 C6—C7—C8 $118.45 (19)$ C25—C24—H24 120.00 C3—C8—C7 $120.4 (2)$ C24—C25—H25 121.00 C1—C9—C10 $119.91 (18)$ C26—C25—H25 121.00	C1—C2—C3	132.49 (19)	C21—C29—C34	120.66 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C2—C1	108.73 (18)	C30—C29—C34	119.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—C8	119.90 (18)	C29—C30—C31	120.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4	120.76 (18)	C30—C31—C32	118.8 (2)
C3—C4—C5 119.83 (19) N24—C32—C33 118.98 (19) C4—C5—C6 118.94 (19) C31—C32—C33 122.3 (2) N3—C6—C5 119.18 (19) C32—C33—C34 118.50 (19) N3—C6—C7 118.37 (18) C29—C34—C33 120.61 (18) C5—C6—C7 122.45 (19) C23—C24—H24 120.00 C6—C7—C8 118.45 (19) C25—C24—H24 120.00 C3—C8—C7 120.4 (2) C24—C25—H25 121.00 C1—C9—C10 119.91 (18) C26—C25—H25 121.00	C2—C3—C8	119.28 (18)	N24—C32—C31	118.67 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C5	119.83 (19)	N24—C32—C33	118.98 (19)
N3—C6—C5 119.18 (19) C32—C33—C34 118.50 (19) N3—C6—C7 118.37 (18) C29—C34—C33 120.61 (18) C5—C6—C7 122.45 (19) C23—C24—H24 120.00 C6—C7—C8 118.45 (19) C25—C24—H24 120.00 C3—C8—C7 120.4 (2) C24—C25—H25 121.00 C1—C9—C10 119.91 (18) C26—C25—H25 121.00	C4—C5—C6	118.94 (19)	C31—C32—C33	122.3 (2)
N3—C6—C7 118.37 (18) C29—C34—C33 120.61 (18) C5—C6—C7 122.45 (19) C23—C24—H24 120.00 C6—C7—C8 118.45 (19) C25—C24—H24 120.00 C3—C8—C7 120.4 (2) C24—C25—H25 121.00 C1—C9—C10 119.91 (18) C26—C25—H25 121.00	N3—C6—C5	119.18 (19)	C32—C33—C34	118.50 (19)
C5—C6—C7122.45 (19)C23—C24—H24120.00C6—C7—C8118.45 (19)C25—C24—H24120.00C3—C8—C7120.4 (2)C24—C25—H25121.00C1—C9—C10119.91 (18)C26—C25—H25121.00	N3—C6—C7	118.37 (18)	C29—C34—C33	120.61 (18)
C6—C7—C8118.45 (19)C25—C24—H24120.00C3—C8—C7120.4 (2)C24—C25—H25121.00C1—C9—C10119.91 (18)C26—C25—H25121.00	C5—C6—C7	122.45 (19)	C23—C24—H24	120.00
C3—C8—C7 120.4 (2) C24—C25—H25 121.00 C1—C9—C10 119.91 (18) C26—C25—H25 121.00	C6—C7—C8	118.45 (19)	C25—C24—H24	120.00
C1—C9—C10 119.91 (18) C26—C25—H25 121.00	C3—C8—C7	120.4 (2)	C24—C25—H25	121.00
	C1—C9—C10	119.91 (18)	C26—C25—H25	121.00

C1—C9—C14	120.30 (18)	С26—С27—Н27	121.00
C10-C9-C14	119.7 (2)	С28—С27—Н27	121.00
C9—C10—C11	120.1 (2)	C23—C28—H28	120.00
C10—C11—C12	118.7 (2)	С27—С28—Н28	120.00
C11—C12—C13	122.5 (2)	С29—С30—Н30	120.00
N4—C12—C13	118.45 (19)	С31—С30—Н30	120.00
N4—C12—C11	119.03 (19)	С30—С31—Н31	121.00
C12—C13—C14	118.47 (19)	С32—С31—Н31	121.00
C9—C14—C13	120.40 (18)	С32—С33—Н33	121.00
C3—C4—H4	120.00	С34—С33—Н33	121.00
C5—C4—H4	120.00	С29—С34—Н34	120.00
C4—C5—H5	121.00	С33—С34—Н34	120.00
N2-02-N1-01A	-178.8 (2)	C4—C3—C8—C7	0.1 (3)
N2—O2—N1—C1	0.7 (2)	C2—C3—C4—C5	-177.6 (2)
N1—O2—N2—C2	-1.4 (2)	C3—C4—C5—C6	0.8 (3)
N22—O22—N21—O21A	-179.3 (2)	C4—C5—C6—C7	-0.5 (3)
N22—O22—N21—C21	-0.7 (2)	C4—C5—C6—N3	179.06 (19)
N21—O22—N22—O21B	-178.0 (2)	C5—C6—C7—C8	0.0 (3)
N21—O22—N22—C22	1.5 (2)	N3—C6—C7—C8	-179.54 (19)
O2—N1—C1—C9	-176.89 (17)	C6—C7—C8—C3	0.2 (3)
01A—N1—C1—C2	179.5 (4)	C14—C9—C10—C11	-1.1 (3)
01A—N1—C1—C9	2.4 (5)	C1—C9—C14—C13	-178.11 (19)
O2—N1—C1—C2	0.1 (2)	C1—C9—C10—C11	176.3 (2)
O2—N2—C2—C3	-175.41 (17)	C10-C9-C14-C13	-0.7 (3)
O2—N2—C2—C1	1.4 (2)	C9—C10—C11—C12	1.1 (3)
O3—N3—C6—C5	8.3 (3)	C10-C11-C12-N4	-177.74 (19)
O3—N3—C6—C7	-172.13 (19)	C10-C11-C12-C13	0.7 (3)
O4—N3—C6—C5	-171.6 (2)	C11—C12—C13—C14	-2.4 (3)
O4—N3—C6—C7	8.0 (3)	N4—C12—C13—C14	175.99 (18)
O5—N4—C12—C11	16.0 (3)	C12—C13—C14—C9	2.4 (3)
O6—N4—C12—C11	-164.9 (2)	N21—C21—C22—N22	1.4 (2)
O6—N4—C12—C13	16.7 (3)	N21—C21—C22—C23	-176.5 (2)
O5—N4—C12—C13	-162.5 (2)	C29—C21—C22—N22	-175.4 (2)
O22—N21—C21—C22	-0.4 (2)	C29—C21—C22—C23	6.8 (4)
O21A—N21—C21—C22	177.6 (4)	N21-C21-C29-C30	23.0 (3)
O21A—N21—C21—C29	-5.2 (5)	N21—C21—C29—C34	-154.8 (2)
O22—N21—C21—C29	176.84 (17)	C22—C21—C29—C30	-160.6 (2)
O21B—N22—C22—C23	-4.2 (4)	C22—C21—C29—C34	21.6 (3)
O21B—N22—C22—C21	177.6 (3)	N22—C22—C23—C24	-135.9 (2)
O22—N22—C22—C21	-1.7 (2)	N22—C22—C23—C28	42.3 (3)
O22—N22—C22—C23	176.42 (17)	C21—C22—C23—C24	41.7 (3)
O24—N23—C26—C25	-6.9 (3)	C21—C22—C23—C28	-140.1 (2)
O23—N23—C26—C25	173.5 (2)	C22—C23—C24—C25	179.0 (2)
O23—N23—C26—C27	-6.6 (3)	C28—C23—C24—C25	0.8 (3)
O24—N23—C26—C27	173.0 (2)	C22—C23—C28—C27	-178.5 (2)
O25—N24—C32—C33	162.4 (2)	C24—C23—C28—C27	-0.2 (3)
O25—N24—C32—C31	-15.3 (3)	C23—C24—C25—C26	-0.7 (3)
O26—N24—C32—C31	165.6 (2)	C24—C25—C26—N23	-179.92 (19)
O26—N24—C32—C33	-16.7 (3)	C24—C25—C26—C27	0.2 (3)

N1—C1—C2—N2	-1.0 (2)	N23—C26—C27—C28	-179.59 (19)
N1-C1-C9-C14	152.1 (2)	C25—C26—C27—C28	0.3 (3)
C2-C1-C9-C10	158.6 (2)	C26—C27—C28—C23	-0.3 (3)
C2—C1—C9—C14	-24.1 (3)	C21-C29-C30-C31	-176.6 (2)
C9—C1—C2—C3	-8.2 (4)	C34—C29—C30—C31	1.2 (3)
N1—C1—C2—C3	175.2 (2)	C21—C29—C34—C33	178.61 (19)
C9—C1—C2—N2	175.6 (2)	C30-C29-C34-C33	0.8 (3)
N1—C1—C9—C10	-25.2 (3)	C29—C30—C31—C32	-1.7 (3)
N2-C2-C3-C4	135.9 (2)	C30—C31—C32—N24	177.95 (19)
N2—C2—C3—C8	-41.2 (3)	C30-C31-C32-C33	0.3 (3)
C1—C2—C3—C4	-40.1 (3)	N24—C32—C33—C34	-175.98 (19)
C1—C2—C3—C8	142.9 (2)	C31—C32—C33—C34	1.7 (3)
C8—C3—C4—C5	-0.6 (3)	C32—C33—C34—C29	-2.2 (3)
C2—C3—C8—C7	177.2 (2)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
0.95	2.59	3.283 (3)	130
0.95	2.32	3.218 (4)	157
0.95	2.40	2.955 (4)	117
0.95	2.46	3.244 (3)	139
0.95	2.57	3.358 (3)	141
0.95	2.36	3.254 (4)	156
0.95	2.54	2.951 (4)	106
0.95	2.34	2.929 (4)	119
0.95	2.52	3.261 (3)	135
0.95	2.50	3.284 (3)	140
	D—H 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	D—H H…A 0.95 2.59 0.95 2.32 0.95 2.40 0.95 2.46 0.95 2.57 0.95 2.36 0.95 2.54 0.95 2.34 0.95 2.52 0.95 2.50	DH $H\cdots A$ $D\cdots A$ 0.95 2.59 3.283 (3) 0.95 2.32 3.218 (4) 0.95 2.40 2.955 (4) 0.95 2.46 3.244 (3) 0.95 2.57 3.358 (3) 0.95 2.36 3.254 (4) 0.95 2.54 2.951 (4) 0.95 2.54 2.929 (4) 0.95 2.52 3.261 (3) 0.95 2.50 3.284 (3)

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, y-1/2, -z+1/2; (iii) -x+1, -y+1, -z; (iv) x+1, y, z; (v) -x, y+1/2, -z+1/2.

